
Computer Networks 196 (2021) 108220

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Pi-Radio v1: Calibration techniques to enable fully-digital beamforming at
60 GHz
Aditya Dhananjay a,d,∗, Kai Zheng b, Marco Mezzavilla a,d, Lorenzo Iotti c, Dennis Shasha a,d,
Sundeep Rangan a,d

a Pi-Radio Inc., 155 Water Street Unit 4/10, Brooklyn, 11201 NY, USA
b University of California San Diego, 9500 Gilman Dr. La Jolla, CA 92093, USA
c Nokia, 171 Madison Ave Suite 1100, 10016 NY, USA
d New York University, 370 Jay Street, Brooklyn, 11201 NY, USA

A R T I C L E I N F O

Keywords:
Next-generation wireless
Millimeter-wave
Software-defined-radio
Prototyping
Beamforming
Calibration

A B S T R A C T

The Pi-Radio v1 software-defined radio (SDR) platform incorporates a 4-channel fully-digital transceiver board
that operates in the 57–64 GHz band and connects to the powerful Xilinx RFSoC-based ZCU111 evaluation
board. This paper illustrates various calibration procedures that have been implemented to avoid relying on
expensive laboratory equipment and infrastructure like spectrum analyzers, signal generators, or even anechoic
chambers. We conclude this paper with a demonstration of beamforming enabled through geometrically
determined beamforming weights, thereby demonstrating that the SDR nodes have been calibrated correctly.
1. Introduction and motivation

The millimeter wave (mmWave) bands – roughly corresponding to
frequencies above 30 GHz – represent the new frontier of cellular wire-
less communications [1–6]. This spectrum offers orders of magnitude
more available bandwidth than the congested bands in conventional
microwave frequencies below 6 GHz. Advances in CMOS RF technology
allow to leverage the small wavelengths at mmWave frequencies to
enable large numbers of electrically steerable antenna elements to be
placed in tiny form factors. Further gains can be realized via adaptive
beamforming and spatial multiplexing. Real-world deployments show
how the massive bandwidth along with the large numbers of spatial
degrees of freedom enable orders of magnitude increases in capacity
over current cellular systems [7,8].

However, much remains to be experimentally validated in order
to ultimately enable cellular systems to achieve the potential of the
mmWave bands [9–11]. Such experimentation is not conducted as
widely as the community desires; the problem is mainly one of access.
Of course, theory and simulations represent a critical aspect of any
research efforts. Nonetheless, the community at large recognizes that
more experimentation is urgently needed. The main reason is that
existing software defined radio (SDR) systems are either prohibitively
expensive or feature technologies that are at least 10 years behind

∗ Corresponding author.
E-mail addresses: aditya.dhananjay@pi-rad.io (A. Dhananjay), kai.zheng@ucsd.edu (K. Zheng), mezzavilla@nyu.edu (M. Mezzavilla),

lorenzo.iotti@nokia.com (L. Iotti), shasha@cims.nyu.edu (D. Shasha), srangan@nyu.edu (S. Rangan).
1 Pi-Radio is a spin-off from the New York State Center for Advanced Technologies in Telecommunications (CATT) located at the Tandon School of Engineering

at New York University.

the curve. This is particularly problematic in the millimeter wave
(mmWave) bands, which will, quite simply, dominate the wireless
world for the next 10–15 years. Systems level experimental work has
been monopolized by large industrial labs, while academicians are left
out without adequate access to prototyping platforms and the software
implementations they need to succeed.

The vision at Pi-Radio1 is to make SDR systems featuring advanced
transceiver technologies available to the research community at rea-
sonable rates [12–14]. We have designed, built, and tested our v1 SDR
that features a 4-channel fully-digital transceiver and operates in the
57–64 GHz band. Along these lines, we would like to point out a very
impressive mmWave SDR effort which is currently under development
at UCSD [15]; this team shares our passion for democratizing wireless
research through affordable and advanced SDR systems.

The goal of this paper is to provide a detailed description of the
most challenging steps towards getting millimeter-wave hardware to
work, i.e., calibration. Importantly, our calibration techniques do not
need expensive laboratory bench equipment like mmWave spectrum
analyzers, signal generators (synthesizers), or even anechoic chambers,
as shown in Fig. 1.

The various stages involve: (a) calibration of crystal frequency
offsets; (b) identification of linear operating ranges; (c) timing offset
vailable online 6 June 2021
389-1286/© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.comnet.2021.108220
Received 13 November 2020; Received in revised form 22 April 2021; Accepted 31
 May 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:aditya.dhananjay@pi-rad.io
mailto:kai.zheng@ucsd.edu
mailto:mezzavilla@nyu.edu
mailto:lorenzo.iotti@nokia.com
mailto:shasha@cims.nyu.edu
mailto:srangan@nyu.edu
https://doi.org/10.1016/j.comnet.2021.108220
https://doi.org/10.1016/j.comnet.2021.108220
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108220&domain=pdf

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Fig. 1. A pair of Pi-Radio v1 SDR nodes under test at NYU. Critically, this fully-digital beamformer enables concurrent transmission and reception of signals in different directions.
Fig. 2. The Pi-Radio v1 SDR being tested at NYU. The bottom board is the Xilinx
RFSoC-based ZCU111 evaluation board; the board at the top is the Pi-Radio transceiver
board. The RF shield has been removed to show the transceiver board clearly.

corrections; (d) LO phase offset corrections; (e) magnitude corrections;
(f) IQ gain imbalance corrections; (g) IQ quadrature LO phase im-
balance corrections; and (h) power-on self calibration of polarities.
We conclude this paper with a demonstration of TX/RX beamform-
ing through geometrically determined beamforming weights, thereby
demonstrating that the SDR nodes have been calibrated correctly.

2. Hardware description

The SDR consists of three main parts: (a) the Xilinx RFSoC-based
ZCU111 baseband board; (b) the Pi-Radio 4-channel fully-digital
transceiver board; and (c) a host computer running various software
tool chains (see Fig. 1 and Fig. 2).

Xilinx ZCU111 FPGA Board: The beating heart of this board is
the powerful Zynq UltraScale+ XCZU28DR RFSoC FPGA chip that
features 930k logic cells, 60.5 Mb of block memory, over 4k DSP
slices, several high-speed gigabit transceiver (GT) ports, and over 300
general purpose I/O pins. Critically, this RFSoC also features eight 14-
bit high-speed DACs and eight 12-bit high-speed ADCs. We clock the
DACs and ADCs at 3932.16 MSps, leading to a maximum theoretical
baseband bandwidth of nearly 4 GHz (since the I and Q components
2

are treated independently). The RFSoC also features four ARM Cortex-
A53 cores and two ARM Cortex-R5 cores; these powerful ARM cores
can be used to run Linux, various applications, and also perform
real-time operations. The ZCU111 board also features 4GB of DDR4
memory and supports 100 Gbps optical/copper connections to a host
computer or additional FPGA co-processors. Importantly, this FPGA
contains eight soft-decision forward error correction (SD-FEC) cores in
silicon; these can be used to implement Turbo, Viterbi, LDPC, or Polar
decoders (highly computationally intensive operations) without using
any resources on the actual FPGA.

Pi-Radio v1 Transceiver Kit: This kit consists of a single board that
implements a fully-digital 4-channel mmWave transceiver. On the TX
side, it receives four I/Q analog baseband pairs from the eight DACs
on the RFSoC, and feeds them to a bank of four Analog Devices (ADI)
HMC6300 mmWave up-converters. The resulting mmWave signals are
fed to a 1 × 4 patch antenna array using co-planar waveguide transmis-
sion lines, both designed by Aalto University (Finland). The RX side is
symmetrical, with the ADI HMC6301 mmWave down-converters used
to convert the four incoming RF signals to baseband, which are then
fed into the eight ADCs of the ZCU111 board. While the baseband
bandwidth (supported by the ZCU111) is 4 GHz, the mmWave HMC
chips support 2 GHz of bandwidth. The operating frequency range is
57–64 GHz. All eight channels (four TX and four RX) are phase syn-
chronized by a network comprising of: 1: LO generation using the Texas
Instruments LMX2595; 2: dual-stage LO amplification using the ADI
HMC962 and HMC441 parts; and 3: LO distribution using Wilkinson
dividers by Knowles Dielectric Labs. The boards are fabricated and
assembled (including fully automated pick-and-place) by Sierra Circuits
in Sunnyvale, CA. The boards also have two large circular keep-out
areas around the antenna arrays, which users can use to mount their
own passive dielectric lenses, if needed.

Host Computer: The ZCU111 board connects to a host computer
using a gigabit ethernet interface and a simple TCP/IP control/data
interface. MATLAB (or any other TCP/IP capable software like GNU
Radio) can be run on the host computer to control the SDR operation.
We have already implemented MATLAB-based drivers for this system.
On the TX side, this allows the per-channel waveforms to be created in
MATLAB, and shipped over to the RFSoC to be transmitted in a loop,
until configured otherwise. On the RX side, the MATLAB code triggers
the RFSoC to capture a set of samples from all ADCs synchronously,
and then ship them over to MATLAB for further processing. While this
method does not involve real-time processing on the FPGA, it was ideal
to design, implement, and iterate through the calibration procedures
quickly.

Computer Networks 196 (2021) 108220A. Dhananjay et al.
3. Calibration procedures

It is well known that mmWave systems rely on beamforming to close
the link budgets. The very process of beamforming requires the TX
and RX array elements to transmit and receive with known amplitudes
and phases relative to each other. Achieving this deterministic behavior
requires several types of calibration, which we examine in this section.
Because a primary goal was to perform this calibration without needing
lab bench equipment like mmWave spectrum analyzers and signal
generators that can cost several hundreds of thousands of dollars, the
techniques below perform two-node calibration. This involves placing
two SDR nodes in boresight (i.e., facing each other). One is the node
under calibration (NUC) and the other is the reference node (REF).

3.1. Frequency offset calibration

Many of the calibration techniques in this paper involve performing
frequency domain correlation. For this to work properly, the local
oscillators (LOs) on the NUC and REF need to be very close together,
without large frequency offsets. The LO on the Pi-Radio SDR board is
generated by the TI LMX2595 PLL chip that takes in a reference crystal
oscillator input. We use a nominal 156.25 MHz crystal on our boards,
but practical crystals always vary from their nominal values. Even
small variations in the crystal frequency can lead to large variations
in the final RF frequency. We therefore measured the frequency of the
crystal on each board independently by probing the crystal output pads,
and connecting the probe to a low-cost spectrum analyzer (Tektronix
RSA306 that can measure up to 6 GHz). While calibrating two particu-
lar nodes, we observed that their crystal frequencies were 156.249725
MHz and 156.246375 MHz. This difference can lead to the mmWave
RF center frequencies on the two nodes to differ by as much as 650kHz.
Given that many calibration procedures utilize FFT bins as narrow as
500kHz, these frequency offsets need to be fixed.

Fortunately, fixing these offsets is simple. Once the crystal out-
put frequencies are accurately measured, we simply recalculate the
LMX2595 PLL registers (fractional and integer divider values) with the
measured frequencies, instead of the nominal frequencies.

To test correct performance, we modulated a single tone at the TX
side of the NUC, and measured the spectrum at the RX side of the REF,
and observed that the correct bin on the RX side was populated. We
then recalculated the LMX2595 registers for crystal frequencies that
very slightly deviated from the measured frequencies, and observed
significant leakage into neighboring frequency bins. This showed that
the LO frequencies were calibrated correctly, and we could proceed to
the next step.

3.2. Linearity measurements

The HMC6300 mmWave up-converter has an output P1 dB of about
12 dBm. Considering nominal patch antenna gains of 3 dB each on the
TX and RX side, as well as a nominal 1m spacing between the nodes,
the received power is calculated to be about −50 dBm. The input P1 dB
point on the HMC6301 mmWave down-converter is rated at −19 dBm.
We therefore have no concerns about the linearity on the RX side,
but we need to measure the linearity on the TX side to ensure correct
operation and prevent saturation.

To do this, we ran a simple experiment. The TX NUC transmitted
a single tone baseband signal from TX channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥. We varied
the transmitted power (by digitally scaling the TX waveform), and
measured the receive power on one channel of the RX REF. The results
are shown in Fig. 3. The X axis is simply the RMS value of the digital TX
waveform, expressed in dB. The Y axis is the received power on the RX
REF, at the tone of interest. This shows that as long as we keep that RMS
TX magnitude (digital) below approximately 74 dB, we will operate
in the linear range. These results are consistent across different TX
channels. If the TX waveform is below 40 dB, noise begins to dominate.
3

Fig. 3. [14] Measuring the Linear Operating Range of the TX: Keeping the TX
waveform RMS magnitude below 165 dB ensures linear operation. Below 135 dB, the
system becomes noise limited.

3.3. Timing and phase offset calibration

What causes the problem? The baseband IQ transmission lines
(TLines) from the RFSoC connector to the HMC6300/6301 chips might
not always be length matched. For a given channel, the IQ differential
lines were designed to be length matched; however, the lengths of
the TLines for different channels are different in the board layout.
This is often the case because length-matching TLines can lead to
additional losses and routing complexity. Further, the length of the
TLines between the RFICs (the HMC6300 and HMC6301) and the
antenna elements are also not length matched because the additional
losses in the mmWave bands caused by increasing TLine length can
be very significant. These length mismatches cause per-channel timing
offsets that need to be calibrated out.

On the Pi-Radio transceiver board, the eight channels (4 TX and 4
RX) are phase synchronized using a Wilkinson tree that distributes the
local oscillator (LO) signal. The TLines in this tree are also of different
lengths, in order to make routing feasible and to minimize board losses.
This leads to per-channel phase offsets that also need to be calibrated out,
along with the per-channel timing offsets.

How do we calibrate?We now describe the method to calibrate the
TX array on the NUC. The RX array on REF uses just one active channel;
the other channels can either be turned off or used for redundancy.
When two nodes are placed in boresight, the TX array on the NUC will
be directly in front of the RX array on REF, with about two feet of
spacing between them to ensure far-field operation.

The first step is to estimate the fractional timing offset. As de-
scribed in Algorithm 1 and illustrated in Fig. 4, the TX NUC transmits
four orthogonal wideband sounding sequences, one per channel. These
sequences are randomly generated QPSK signals, known to have excel-
lent correlation properties. The RX REF passes the received waveform
through a fractional delay filter (for several fractional timing offset
hypotheses), and correlates this against each of the four sounding
sequences; this process determines which fractional timing offset leads
to the largest peak in the power delay profile for each of the four TX
channels. This process is repeated over several iterations, and the re-
sults are smartly averaged (as explained later) to estimate the fractional
timing offsets for each channel. The intuition behind this process is that
for incorrect fractional timing offset corrections, the power in the PDP
peak gets spread out over adjacent peaks; but for the correct fractional
timing offset correction, the power is concentrated in just one peak.

The correctness of this method is verified by repeating the ex-
periment, with the difference that the TX NUC pre-compensates the

Computer Networks 196 (2021) 108220A. Dhananjay et al.
sounding sequence by fractionally delaying it by the previously deter-
mined fractional timing offset. This time, we observe that the optimal
fractional timing offset determined by the RX REF is very close to 0
for all channels, thereby demonstrating that the correction is indeed
proper.

The next step is to estimate the per-channel phase offsets. Repeat
the experiment above, where the transmitted waveforms are pre-
compensated by the optimal fractional timing offsets for each TX
channel on the NUC. On the RX REF, correlate the received waveform
against each of the four sounding sequences, and observe the phase of
the maximum peak in the resulting PDPs. Suppose the phases are 𝛽𝑛, for
𝑛 ∈ {1, 2, 3, 4}. The phase correction factors are therefore 𝛾𝑛 = (𝛽𝑛 − 𝛽1)
for 𝑛 ∈ {1, 2, 3, 4}. To verify correct detection of the phase offsets,
further pre-compensate the transmitted sounding sequences on the TX
NUC by de-rotating each sounding sequence 𝑛 by 𝑒𝑥𝑝(𝑗𝛾𝑛); this time,
we observe that the phases of all the received peaks are equal, thereby
demonstrating proper per-channel phase offset correction.

Algorithm 1: Measure Fractional Timing Offsets (One Iteration)
Result: best_to contains the best fractional timing offset estimates for

each TX channel on NUC
Initialize orthogonal time-domain sounding sequences tx_td for all TX
channels;
Initialize (𝑛 = 100) fractional timing offset hypotheses tos uniformly
spaced in [−0.50, 0.49];
Initialize best_to[4] = {0,0,0,0};
Continuously and simultaneously transmit tx_td for all TX channels
on NUC;
Capture samples rx_td from one RX channel on REF;
for txIndex = 1:4 do

Initialize max_peak = 0;
for to ∈ tos do

Pass rx_td through a fractional delay filter of delay to;
Correlate against tx_td[txIndex];
if peak ≥ max_peak then

max_peak = peak;
best_to[txIndex] = to;

end
end
best_to[txIndex] = best_to[txIndex] - best_to[1];
Note: This is in the range of [-1, +1];

end

A Note on Smart Averaging: While searching through all possible
fractional timing offsets, the experiment is run over several iterations,
and the results are averaged; this helps to get clean and stable calibra-
tion factors. However, we cannot simply average the fractional timing
offsets across iterations, because we might get −0.5 as the best_to in one
iteration, but +0.5 in the next, leading to an incorrect average of 0, even
though the two offsets are equivalent. To overcome this issue, we use
a simple and well-known trick: (a) Multiply best_to by 2𝜋; (b) Create
a complex number with the resulting phase; (c) Add these complex
numbers across all iterations; and (d) take the phase of the summed up
complex number. This leads us to another realization: the algorithm
so far has been unable to distinguish between positive and negative
fractional timing offsets (for example, −0.3 and +0.7). Therefore, we
need a final step of integer timing offset correction to be performed.

The experiment is repeated, with the TX NUC pre-compensating
the sounding sequence by the estimated per-channel fractional timing
offset and per-channel phase offsets. The RX REF captures the received
waveform, and checks the location (in time samples) of all four received
PDP peaks (one per TX channel). It is immediately visible that some
peaks are earlier than others, thereby yielding the integer timing offsets
that need to be augmented to the existing fractional timing offsets.

As a final test, the experiment is repeated with the TX NUC pre-
compensating the per-channel sounding sequence by the aggregate
4

Fig. 4. [14] Calibrating the fractional timing offsets and LO phase offsets on the TX
array. The integer timing offsets are 0, and have hence not been plotted. Calibrating
the RX array is analogous.

timing offsets (fractional and integer) and the per-channel phase offsets.
At the RX REF, we can observe that all peaks appear in the same time
sample and have the same phase. This is verified over several iterations.

We have just described the procedure to calibrate the per-channel
timing offset and per-channel phase offset for the TX array. Calibration
of the RX array proceeds in the same way and is provided in our GitHub
repository [16].

What happens if the nodes are not placed perfectly in bore-
sight? Using simple trigonometric calculations, we have shown that
even if the nodes are slightly misaligned, this has a negligible impact
on the fidelity of the calibration procedures. For example, consider
the RX-side calibration, wherein a single TX antenna on the REF is
transmitting, and this signal is received by all antennas on the NUC.
Suppose the distances from the TX antenna to each of the RX antennas
is {𝑑1, 𝑑2, 𝑑3, 𝑑4}. We have calculated that even with node misalignment
of several degrees (easily detectable by the naked eye), the difference
between any 𝑑𝑖 and 𝑑𝑗 , for any two RX channels 𝑖 and 𝑗, is extremely
small. In fact, this difference (𝑑 = 𝑑𝑖 − 𝑑𝑗) is so much smaller than 𝜆,
that it leads to phase errors of only a few degrees in the worst case. This
has a negligible impact on the beams, and is therefore not a problem
for our techniques.

3.4. Magnitude correction

What causes the problem? Multiple copies of the same module
(like the HMC6300) will have manufacturing and packaging variations
that lead to the conversion gain showing variances. There are further
variances caused by temperature gradients on the transceiver board.
Warmer modules will show lower gain than the cooler modules during
steady state operation. Correct beamforming operation relies on deter-
ministic gains or signal powers across these modules; these therefore
have to be measured and calibrated out.

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Fig. 5. [14] Calibrating the TX and RX magnitudes (digital gains). The rows and
columns correspond to TX and RX indices. Magnitudes are normalized by the (TX,
RX) pair with maximum power within that iteration.

How do we calibrate? We describe the magnitude calibration of
the TX array on NUC; the RX calibration is symmetrical. This simple
procedure is shown in Algorithm 2. Transmit a wideband signal from
each TX channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥, one channel at a time (i.e., not simultane-
ously). Measure the receive power on REF, and divide it by the received
power when 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 = 1 was transmitting. Take the average of these
correction factors across all RX channels on REF. The result is the
magnitude correction factor for each TX channel on NUC. Run this
experiment over several iterations (in our experience, 3–4 iterations are
sufficient), and take the average of the results for the sake of stability
and convergence. The results from magnitude calibration are shown in
Fig. 5. Observe that within a few iterations, the TX and RX magnitude
correction factors have stabilized to steady state values.
Algorithm 2: Measure Magnitude Calibration Factors (One Iteration)
Result: tx_mag_correction contains the best magnitude correction

estimates for each TX channel on NUC
Initialize orthogonal a wideband time-domain signal tx_td[1:N] (1-D
vector of length 𝑁);
Initialize mags, a 4x4 matrix of zeros. Rows correspond to TX
channels on NUC; columns correspond to RX elements on REF;
for txIndex = 1:4 do

Transmit continually tx_td[1:N] on TX channel txIndex of NUC.
Other TX channels are silent;
Receive rx_td[1:4][1:N], which is 4 vectors each of length 𝑁 (one
vector per RX channel on REF);
for rxIndex = 1:4 do

Measure power within the frequency band of interest in
rx_td[rxIndex][1:N], and save in mags[txIndex][rxIndex];

end
𝑚_𝑣 = 𝑚𝑎𝑔𝑠[𝑡𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 4].∕𝑚𝑎𝑔𝑠[1][1 ∶ 4];
Note: Pairwise division in MATLAB syntax;
𝑡𝑥_𝑚𝑎𝑔_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛[𝑡𝑥𝐼𝑛𝑑𝑒𝑥] = 𝑚𝑒𝑎𝑛(𝑚_𝑣);

end

3.5. IQ calibration on the receiver

What causes the problem? Consider a receiver that down-converts
from RF to baseband. Without loss of generality, assume that the RF
signal is 𝑐𝑜𝑠(2𝜋(𝑓𝑐+𝑓𝑚)𝑡, where 𝑓𝑐 is the carrier frequency and 𝑓𝑚 is the
transmitted baseband signal frequency. An ideal receiver produces the
5

complex baseband signal by mixing the received signal with a complex
carrier at frequency 𝑓𝑐 , and passing through a low pass filter (LPF). This
can be written as:

𝑖(𝑡) = 𝐿𝑃𝐹 (𝑐𝑜𝑠(2𝜋𝑓𝑐 𝑡)𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)) (1)

𝑞(𝑡) = 𝐿𝑃𝐹 (𝑠𝑖𝑛(2𝜋𝑓𝑐 𝑡)𝑐𝑜𝑠(2𝜋(𝑓𝑐 + 𝑓𝑚)𝑡)) (2)

This yields 𝑖(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡) and 𝑞(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡), as desired.
However, a practical receiver will have the following imperfections:
(a) the conversion gain on the 𝐼 channel and 𝑄 channel can differ by
a factor of 𝛼 ≠ 1; and (b) the quadrature carrier might not be exactly
𝜋∕2 radians out of phase with the in-phase carrier, the phase error being
𝑣 > 0 radians. Using standard trigonometric identities, the practically
demodulated signals reduce to:

𝑖′(𝑡) = 𝛼𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡) (3)

𝑞′(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡 + 𝑣) (4)

Note that the magnitude factor 𝛼 and phase factor 𝑣 were arbitrarily
assigned to the 𝑖 and 𝑞 channels respectively, without any loss of
generality. These imbalances lead to poor suppression of undesired
sidebands, thereby driving up the error vector magnitudes (EVMs) in
the receiver. Expanding equation (4) and writing in matrix notation,
we get:
[

𝑖′(𝑡)
𝑞′(𝑡)

]

=
[

𝛼 0
𝑠𝑖𝑛(𝑣) 𝑐𝑜𝑠(𝑣)

] [

𝑖(𝑡)
𝑞(𝑡)

]

(5)

Call this middle matrix 𝑀 ; the values of 𝛼 and 𝑣 determine how
imbalanced the receiver is, and therefore the magnitude of the unde-
sired sidebands. Overcoming these imbalances involves estimating and
inverting this matrix 𝑀 to recover the desired baseband signal.

Generating clean sinusoids: Some IQ calibration procedures rely
on being able to generate clean sinusoids (at mmWave frequencies)
without sidebands or spurs; but how do we generate such signals?
Lab bench synthesizers that can generate mmWave signals cost several
hundreds of thousands of dollars. Another possibility is to configure
REF (the SDR other than the node under calibration, or NUC) at center
frequency 𝑓𝑐 and to transmit a modulated tone at 𝑓𝑚 to generate a
sinusoid at 𝑓𝑐 +𝑓𝑚. This, however, will lead to a situation in which the
transmitter-side IQ imbalances perturb the signal, with the result that
the calibration technique will be unable to distinguish between TX-side
and RX-side imbalances. Our work-around is to use Offset LO.

As an example, say we are calibrating the RX IQ imbalances on the
NUC at center frequency 58 GHz, and suppose we want 𝑓𝑚 = -1 GHz.
To generate this 57 GHz signal, we will configure REF at 𝑓𝑐 = 56 GHz,
and modulate a baseband signal at frequency +1 GHz. The transmitted
signal will therefore have a desired sideband at 57 GHz, and a smaller
undesired sideband at 55 GHz. At the receiver NUC, 𝑓𝑐 = 58 GHz. The
undesired sideband is 3 GHz down from center, and is therefore filtered
away in the IF stage of down-conversion. Using this simple Offset LO
technique, we can generate the required clean tones as seen by the
receiver NUC.

How do we calibrate? Our technique is inspired by Ellingson’s IQ
calibration procedure [17]. Let us start with the 𝛼 calibration on the RX
channels of the NUC, shown in Algorithm 3. The NUC is configured at
center frequency 58 GHz, and is expecting to receive a clean sinusoid
at 57 GHz, which is generated by the REF TX as explained in the
previous paragraph. Capture the I and Q baseband waveforms on the
NUC, and measure the power on them. The result is that 𝛼 is the
integrated energy on the I channel divided by the integrated energy on
the Q channel. This measurement is repeated over several iterations and
averaged. There is a further improvement, in which the time-domain
signals are passed through an FFT, and only the energy corresponding
to the frequency bin of interest (-1 GHz) is used in averaging. The two
methods provide results that are virtually indistinguishable. Once the 𝛼
term is known, calibration simply involves dividing the real component

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Algorithm 3: Measure RX-side IQ 𝛼 imbalance (One Iteration)
Result: rx_iq_alpha contains the best RX IQ 𝛼 estimates for each RX

channel on NUC. This is a vector of size 4.
Configure 𝑓𝑐 on the NUC to 58 GHz;
Configure 𝑓𝑐 on the REF to 56 GHz;
Initialize tx_td, a row vector containing time domain samples for a
single tone sinusoid at 1 GHz. There are 𝑁 samples in this waveform;
Transmit continually tx_td from one TX channel on the REF. Other TX
channels are silent;
Receive rx_td[1:4][1:N], which is 4 complex vectors each of length 𝑁
(one vector per RX channel on the NUC);
for rxIndex = 1:4 do

Measure 𝐸𝑖 as the RMS energy in the 𝐼 channel of
𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁];
Measure 𝐸𝑞 as the RMS energy in the 𝑄 channel of
𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁];
Calculate 𝑟𝑥_𝑖𝑞_𝑎𝑙𝑝ℎ𝑎[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] = 𝐸𝑖

𝐸𝑞
;

end

of the received time-domain waveform by 𝛼, and leaving the imaginary
component untouched.

Once the 𝛼 imbalance is corrected, Eq. (5) reduces to:
[

𝑖′(𝑡)
𝑞′(𝑡)

]

=
[

1 0
𝑠𝑖𝑛(𝑣) 𝑐𝑜𝑠(𝑣)

] [

𝑖(𝑡)
𝑞(𝑡)

]

(6)

The next step is to calibrate out the quadrature phase imbalances 𝑣.
The phase imbalance matrix in the equation above needs to be inverted
to recover 𝐼 and 𝑄 from 𝐼 ′ and 𝑄′ as shown:
[

𝑖(𝑡)
𝑞(𝑡)

]

=
[

1 0
−𝑡𝑎𝑛(𝑣) 𝑠𝑒𝑐(𝑣)

] [

𝑖′(𝑡)
𝑞′(𝑡)

]

(7)

This task boils down to estimating the value of 𝑣, applying equation
(7), and we are done. But how do we estimate 𝑣? The idea is to
take the received waveform, and apply corrections for a large number
of 𝑣 hypotheses in the range of [-1 1] radians. For each hypothesis,
measure the sideband suppression (i.e., the received baseband power
at −1 GHz divided by the received baseband power at +1 GHz). The 𝑣
hypothesis that leads to the greatest suppression is the correct estimate,
as shown in Algorithm 4. Average over a number of iterations for
good performance and stability. The results from one such iteration is
shown in Fig. 6. This graph plots the resulting sideband suppression as
a function of different phase correction factors that have been applied.
One can see that the I and Q LO paths in the receiver are not 𝜋∕2 out of
phase, but instead have an additional phase error of 0.2 radians. Once
this phase correction is applied (Eq. (7)), the sideband suppression
improves from 19.91 dB to 31.17 dB.

We have just described how to estimate and correct the RX-side IQ
imbalances: the magnitude correction factor 𝛼 and the phase correction
factor 𝑣. To finally show the device’s overall performance, we run an
experiment that does the following: (a) capture samples at the RX,
plot the spectrum, and show the uncalibrated sideband suppression;
(b) apply the 𝛼 correction to the same signals; and (c) apply the 𝑣
correction to the same signals. Fig. 7 shows the sideband suppression
getting better as the 𝛼 and 𝑣 corrections are applied. The columns
correspond to RX channel 1, 2, and 3 (4 is not shown for space reasons).
Despite the HMC6301 (mmWave receiver) being a heterodyne down-
converter (as opposed to a direct converter), we observed that the
typical 𝑣 correction factors were rather high, in the range of −0.3
to +0.3 radians. Fig. 7 shows that correctly performing RX-side IQ
calibration results in additional sideband suppression in the 10–13 dB
range.
6

Fig. 6. [14] Estimating the quadrature phase offset on one RX channel on the NUC
(one iteration). Observe that after 𝑣 correction, the sideband suppression is improved
by over 11 dB.

Algorithm 4: Measure RX-side IQ 𝑣 imbalance (One Iteration)
Result: rx_iq_v contains the best RX IQ 𝑣 estimates for each RX

channel on NUC. This is a vector of size 4.
Configure 𝑓𝑐 on the NUC to 58 GHz;
Configure 𝑓𝑐 on the REF to 56 GHz;
Initialize tx_td, a row vector containing time domain samples for a
single tone sinusoid at 𝑓𝑚 = +1 GHz. There are 𝑁 samples in this
waveform;
Initialize vs, a vector containing 𝑛 = 100 hypotheses of 𝑣, uniformly
spaced in [-1 1] radians;
Transmit continually tx_td from one TX channel on the REF. Other TX
channels are silent;
Receive rx_td[1:4][1:N], which is 4 complex vectors each of length 𝑁
(one vector per RX channel on the NUC);
for rxIndex = 1:4 do

Apply the 𝛼 correction to 𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁];
Initialize 𝑠𝑚𝑎𝑥 = 0;
for 𝑣 ∈ 𝑣𝑠 do

Apply 𝑣 to 𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁] using equation (7);
Calculate 𝑟𝑥_𝑓𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁] by passing the time-domain
samples through an FFT;
Measure 𝐸𝐿𝑆𝐵 as the energy in the desired (lower) sideband
of 𝑟𝑥_𝑓𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁] (corresponding to 𝑓𝑚 = −1 GHz);
Measure 𝐸𝑈𝑆𝐵 as the energy in the undesired (upper)
sideband of 𝑟𝑥_𝑓𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁] (corresponding to 𝑓𝑚 = +1
GHz);
Calculate 𝑠 = 𝐸𝐿𝑆𝐵

𝐸𝑈𝑆𝐵
. Express in dB;

if 𝑠 ≥ 𝑠𝑚𝑎𝑥 then
𝑠𝑚𝑎𝑥 = 𝑠;
𝑟𝑥_𝑖𝑞_𝑣[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] = 𝑣;

end
end

end

3.6. IQ calibration at the transmitter

What causes the problem? An up-converting transmitter takes the
complex baseband signal (say it is a single tone 𝑒𝑗2𝜋𝑓𝑚𝑡) and mixes it
with a complex carrier 𝑒𝑗2𝜋𝑓𝑐 𝑡. The real component of this result is then
amplified and transmitted. However, the quadrature component of the
carrier might not be phased at perfectly 𝜋∕2 away from the in-phase

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Fig. 7. [14] Applying the RX IQ calibration factors results in additional suppression
of the unwanted sideband by 10–13 dB (the total suppression is denoted by 𝑠). The
columns represent RX channel 1, 2, and 3 (the figure would become too small if channel
4 were also plotted). The 𝑋-axis is the subcarrier index (frequency) and the 𝑌 -axis is
the power in dB. This figure plots just one iteration.

component of the carrier; this might have a phase error of 𝑣 radians.
Further, the conversion gains on the I and Q channels might differ by a
factor of 𝛼. If the baseband signal is given by 𝑖(𝑡) = 𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡) and
𝑞(𝑡) = 𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡), the baseband equivalent of the transmitted signal
in a practical transmitter is given by: 𝑖′(𝑡) = 𝛼𝑐𝑜𝑠(2𝜋𝑓𝑚𝑡) and 𝑞′(𝑡) =
𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡 + 𝑣); we have arbitrarily assigned the 𝛼 and 𝑣 factors to the
I and Q channels respectively, without any loss of generality. Using
standard trigonometric identities, this can be written as:
[

𝑖′(𝑡)
𝑞′(𝑡)

]

=
[

𝛼 0
𝑠𝑖𝑛(𝑣) 𝑐𝑜𝑠(𝑣)

] [

𝑖(𝑡)
𝑞(𝑡)

]

(8)

How do we calibrate? The first step is to measure and calibrate out
the 𝛼 factor, as shown in Algorithm 5. Activate one TX channel at a time
on the NUC, and transmit only the real component of a single tone base-
band signal; measure the received power on the RX REF. Next, transmit
only the imaginary component of the baseband signal, and measure the
received power on the RX REF. The ratio of these two received power
values, when averaged over all RX channels on REF, is the estimate of 𝛼.
Average over multiple iterations to get stable calibration factors. Once
the 𝛼 calibration factors are known, applying them simply involves
dividing the real component of the transmitted baseband waveform by
𝛼 and leaving the imaginary component untouched. The next step is
measuring and calibrating the 𝑣 phase offsets in the TX chains.

After the 𝛼 correction factors have been applied, Eq. (8) reduces to:

[

𝑖′(𝑡)
𝑞′(𝑡)

]

=
[

1 0
𝑠𝑖𝑛(𝑣) 𝑐𝑜𝑠(𝑣)

] [

𝑖(𝑡)
𝑞(𝑡)

]

(9)

Overcoming the 𝑣 imbalances involves precoding the transmitted wave-
form by the inverse of the central matrix in Eq. (9). This inverse is given
by:

𝑀−1 =
[

1 0
−𝑡𝑎𝑛(𝑣) 𝑠𝑒𝑐(𝑣)

]

(10)

What we have left to do is to estimate 𝑣 for each of the four channels on
the TX NUC. Let us say the TX NUC is operating at 𝑓 = 58 GHz. The
7

𝑐

Algorithm 5: Measure TX-side IQ 𝛼 imbalance (One Iteration)
Result: tx_iq_alpha contains the best TX IQ 𝛼 estimates for each TX

channel on NUC. This is a vector of size 4.
Configure 𝑓𝑐 on the NUC and REF to be the same (say, 58 GHz);
Initialize tx_td, a row vector containing time domain samples for a
single tone baseband signal. There are 𝑁 complex samples in this
waveform;
for txIndex = 1:4 do

// Measure the I channel on txIndex;
Transmit continually real(tx_td) on the I component of TX
channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥. The Q component of 𝑡𝑥𝐼𝑛𝑑𝑒𝑥, as well as all
other TX channels ≠ 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 are silent;
Receive rx_td[1:4][1:N], which is 4 complex vectors each of
length 𝑁 (one vector per RX channel on the REF);
for rxIndex = 1:4 do

Measure 𝐸𝑖[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] as the energy at the tone of interest
within the received signal 𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁];

end

// Measure the Q channel on txIndex;
Transmit continually imag(tx_td) on the Q component of TX
channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥. The I component of 𝑡𝑥𝐼𝑛𝑑𝑒𝑥, as well as all other
TX channels ≠ 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 are silent;
Receive rx_td[1:4][1:N], which is 4 complex vectors each of
length 𝑁 (one vector per RX channel on the REF);
for rxIndex = 1:4 do

Measure 𝐸𝑞[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] as the energy at the tone of interest
within the received signal 𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁];

end

// Final Calculations;
Calculate 𝑡𝑥_𝑖𝑞_𝑎𝑙𝑝ℎ𝑎[𝑡𝑥𝐼𝑛𝑑𝑒𝑥] as
𝑚𝑒𝑎𝑛(𝐸𝑖[1 ∶ 4] ./ 𝐸𝑞[1 ∶ 4]);
Note: Pairwise division in MATLAB syntax;

end

intuition behind the technique is the following: (a) transmit a single
tone (at 𝑓𝑚 = +1 GHz) from the TX NUC, leading to the desired (upper)
sideband at 59 GHz, and the undesired (lower) sideband at 57 GHz; (b)
the RX REF is operating at an offset LO of 𝑓𝑐 = 56 GHz, and is capable of
measuring the power in only the undesired lower sideband at 57 GHz;
(c) sequentially cycle through and apply the precoding matrices for
every 𝑣 hypothesis on the TX NUC as per Eq. (10); (d) use the RX REF
to determine which 𝑣 precoding led to the lowest undesired sideband;
and (e) since 𝑣 is the only variable, this must correspond to the best 𝑣
correction on the TX NUC. As a simple rule of thumb, the 𝑣 hypotheses
should be spaced at most 0.1 radian apart, but ideally closer.

The Offset LO method ensures that the RX REF sees only the trans-
mitted lower sideband at 57 GHz, but cannot see the transmitted upper
sideband at 59 GHz (this gets filtered out in the IF stage). The procedure
above is repeated for every 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 ∈ [1, 2, 3, 4]. In each run, the
power in the undesired lower sideband is measured by REF across
all 𝑣 hypotheses and all RX channels on REF. The optimal 𝑣 value is
estimated using an MMSE error metric across all 𝑣 hypotheses and all
4 RX channels on REF. These 𝑣 estimates should be averaged over a few
iterations, so as to arrive at stable calibration factors. One iteration of
this procedure is formalized in Algorithm 6.

To examine the TX-side IQ 𝑣 calibration process, we ran a simplified
experiment where only one RX channel on REF was used (otherwise
the data is too much to plot in this paper). As shown in Algorithm
6, each TX channel sequentially cycles through multiple 𝑣 hypotheses
in the range of [−1, 1] radians; in each case, the RX REF measures
the power in the undesired lower sideband at 57 GHz. This has been
plotted in Fig. 8; the four graphs correspond to different TX channels
𝑡𝑥𝐼𝑛𝑑𝑒𝑥 on the NUC. Consider 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 = 1; the optimal 𝑣 correction

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Algorithm 6: Measure TX-side IQ 𝑣 imbalance (One Iteration)
Result: 𝑡𝑥_𝑖𝑞_𝑣[1 ∶ 4] contains the best TX IQ 𝑣 estimates for each TX

channel on NUC.
Configure 𝑓𝑐 on the NUC to 58 GHz;
Configure 𝑓𝑐 on the REF to 56 GHz;
Initialize 𝑡𝑥_𝑡𝑑, a row vector containing time domain samples for a
single tone baseband signal at 𝑓𝑚 = +1 GHz. There are 𝑁 complex
samples in this waveform;
Initialize 𝑣𝑠, an 𝑛 = 100 sized vector containing the 𝑣 hypotheses,
uniform in [−1, 1];
for txIndex = 1:4 do

// Make all the required measurements;
for 𝑣 ∈ 𝑣𝑠 do

Precode 𝑡𝑥_𝑡𝑑 with the matrix from equation (10), using the
current 𝑣 value;
Transmit the waveform from TX channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 on the
NUC. All other TX channels on NUC are silent;
Receive rx_td[1:4][1:N], which is 4 complex vectors each of
length 𝑁 (one vector per RX channel on the REF);
for rxIndex = 1:4 do

Measure 𝑝[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][𝑣] as the energy (in dB) in
𝑟𝑥_𝑡𝑑[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][1 ∶ 𝑁] at baseband frequency 𝑓𝑚 = +1 GHz
(corresponding to the undesired sideband being
transmitted for the current 𝑣 hypothesis);

end
end
// Normalize the measurements in 𝑝 (in dB);
for rxIndex = 1:4 do

𝑚 = 𝑚𝑖𝑛(𝑝[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][∶]);
for 𝑣 ∈ 𝑣𝑠 do

𝑝[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][𝑣] = 𝑝[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][𝑣] − 𝑚;
end

end
// Estimate optimal v;
for 𝑣 ∈ 𝑣𝑠 do

𝑒𝑟𝑟[𝑣] = 0;
for rxIndex = 1:4 do

𝑒𝑟𝑟[𝑣] = 𝑒𝑟𝑟[𝑣] + (𝑝[𝑟𝑥𝐼𝑛𝑑𝑒𝑥][𝑣])2;
end

end
// Which v has the lowest error?;
𝑡𝑥_𝑖𝑞_𝑣[𝑡𝑥𝐼𝑛𝑑𝑒𝑥] = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑒𝑟𝑟[𝑣], 𝑣);

end

is 0.46 radians, showing that the hardware imperfections can be really
large. If this correction had not been applied, this undesired sideband
would be larger by 8.567 dB. Channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 = 3 has a small IQ 𝑣
error of 0.12 radian, and the additional sideband suppression offered
by 𝑣 calibration is small (0.8663 dB). Channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 = 4 has a
moderate IQ 𝑣 correction of 0.26 radian, but the benefit of applying
the calibration is quite large (11.59 dB).

Why are the graphs in Fig. 8 noisy? The goal of the Offset LO
method is to ensure that the RX REF sees only the transmitted lower
sideband, with the transmitted upper sideband being filtered away. We
therefore want the 𝑓𝑐 at the TX NUC and the RX REF to be far apart.
The tone corresponding to the transmitted lower sideband (57 GHz) is
near the left edge of the transition band of the transmitter IF filter;
similarly, this tone is also near the right edge of the transition band of
the receiver IF filter. This observation, when combined with the fact
that the lower sideband is not the desired sideband at the TX NUC,
makes the signal very weak at the RX REF. These low-power signals
make the measurements in Fig. 8 appear noisy.
8

Fig. 8. [14] TX IQ calibration: Each TX cycles through and precodes using multiple
𝑣 hypotheses; in each case, the power in the undesired (lower) sideband is measured
by the RX REF. Observe that the 𝑣 corrections can be quite large (as high as 0.46
radians), and correcting the 𝑣 imbalance can yield additional sideband suppression of
up to 11dB. The data marker 𝑣 is the IQ phase hypothesis, and 𝑝 refers to the power
in the undesired sideband (same 𝑝 as in Algorithm 6).

3.7. Summary of IQ calibration

Despite the fact that both the HMC6300 mmWave up-converter
and the HMC6301 mmWave down-converter have heterodyne archi-
tectures (as opposed to direct conversion), the IQ imbalances are quite
significant. This can lead to large unwanted sidebands, thereby low-
ering the EVM of the signals. We have observed that applying the
IQ corrections can lead to additional suppression of up to 15 dB,
thereby demonstrating the importance of performing these calibrations
carefully.

The suite of TX and RX array calibrations (fractional + integer
timing offsets, LO phase offsets, and magnitude calibration) takes about
30 min to run. This process calibrates both nodes, since they take turns
behaving as the NUC and the REF. These calibrations take a long time
to run because of the discontinuous nature of the MATLAB drivers;
shipping a new waveform to the FPGA, or triggering and receiving the
waveform in MATLAB takes about 1𝑠 to run. Given that the calibration
process requires several hundred iterations, the process takes time.
Of course, we can speed it up by running the calibration procedures
directly on the FPGA. This is planned in future work.

The IQ calibrations take about an hour to run, the time being dom-
inated by the sheer number of waveform writes and reads needed by
the TX IQ 𝑣 calibration. Once all the procedures are run, the calibration
factors are written to a file, and these can be loaded upon startup. How-
ever, we realized that there are random starting LO phase variations
across power cycles; re-running the calibration routines upon every
power cycle is infeasible. We therefore designed and implemented a
self-calibration routine that can be run every power cycle; this takes
about one minute to run, and is described next.

4. Self calibration upon power up

The HMC6300 and HMC6301 chips on the Pi-Radio transceiver
board are kept phase-locked, thanks to the network that generates,
amplifies, and distributes this LO signal (which is 1∕3.5 the desired
RF center frequency 𝑓𝑐) to all TX and RX channels. Recall that the
HMC chips have two LO multipliers on chip, which are used for: (a)

Computer Networks 196 (2021) 108220A. Dhananjay et al.

t
p
i

h
m
c

I
l
I
R
s

w

e

a 0.5x multiplier for the conversion between baseband and IF; and (b)
a 3x multiplier for the conversion between IF and RF. This leads to
the RF center frequency being 3.5× that of the input LO frequency.
Upon power cycling, the starting phase of 𝑓𝑐 generated on an arbitrary
subset of channels could be shifted by 𝜋 radians with respect to the
other channels on the board. We observed this process to be seemingly
random, and we could not figure out any digital controls to the HMC
chips to achieve deterministic phase across all chips. We therefore
needed a method to: (a) measure the starting phases of each HMC
chip in the system at the time of calibration; (b) run a simple test at
every subsequent power cycle to see which TX and RX channels have
flipped their starting phase as compared to the previous power cycle;
and (c) perform the detection and correction of this phase/anti-phase
issue (also known as polarities) within one minute. This is important
because users do not want to wait too long to use an SDR, and they
definitely do not want to have to physically move two SDR nodes in boresight
and re-run the long calibration every time the nodes are power cycled.

After the SDR nodes have been calibrated using the two-node pro-
cess (involving the NUC and the REF), we run an additional self-
measurement phase (involving only one node). All the phases of the
TX and RX channels are assumed to be correct, because that is assured
through the two-node calibration. We then measure the channel between
each TX channel and each RX channel on the same node; each of these
16 measurements contains the system frequency response for that (TX,
RX) channel pair. Generating these system frequency responses is shown
in Algorithm 7. This system frequency response implicitly contains
embedded information that is unique to that SDR node, including the
reflections from the RF shields and minor variations in part placement.
This set of system frequency responses is written to a file; this contains
all the information necessary to correct the polarities of each channel
(i.e., the phase/anti-phase issue) upon power up.
Algorithm 7: Measure System Frequency Responses
Result: self_interference_fd[1:4][1:4] contains the system frequency

response between each TX each RX channel.
Initialize a known wideband channel sounding sequence 𝑡𝑥_𝑡𝑑 of
length 𝑁 in time domain;
for txIndex=1:4 do

Transmit 𝑡𝑥_𝑡𝑑 from 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 continuously. All other TX channels
are silent.;
Trigger and Receive 𝑟𝑥_𝑡𝑑[1 ∶ 4][1 ∶ 𝑁] from all RX channels
simultaneously.;
for rxIndex=1:4 do

Calculate rx_fd = FFT(rx_td[rxIndex][:]);
Assign self_interference_fd[txIndex][rxIndex] = rx_fd;

end
end
Write to file self_interference_fd[1:4][1:4];

When the SDR is power cycled, each TX and RX chip might arbi-
rarily shift its starting phase by 𝜋 radians. To correct this, we run the
olarity detection and correction procedure from Algorithm 8. The intu-
tion is as follows. Measure the system frequency response between each

TX channel and each RX channel. For now, consider one TX channel
𝑡𝑥𝐼𝑛𝑑𝑒𝑥 and one RX channel 𝑟𝑥𝐼𝑛𝑑𝑒𝑥. Correlate this newly measured
system frequency response against the previously saved system fre-
quency response from Algorithm 7. Observe the output of the correlator
in the time domain; if the phase of the maximum amplitude peak is
close to 0, it means that either: (a) neither 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 nor 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 have
flipped their polarities; or (b) both 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 and 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 have flipped
their polarities. Conversely, if the phase of the maximum amplitude
peak is close to 𝜋, it means that exactly one of 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 and 𝑟𝑥𝐼𝑛𝑑𝑒𝑥
ave flipped their polarities. Stage 1 in Algorithm 8 populates a 4 × 4
atrix 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟 with the rows and columns corresponding to TX and RX

hannels respectively. Each matrix element 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[𝑡𝑥𝐼𝑛𝑑𝑒𝑥][𝑟𝑥𝐼𝑛𝑑𝑒𝑥]
contains a 0 if none or both of 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 and 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 have flipped, and
1 otherwise. This has been illustrated through a few examples shown:
9

Algorithm 8: Self Cal: Polarity Correction
Result: 𝑡𝑥_𝑝𝑜𝑙𝑠[1 ∶ 4] and 𝑟𝑥_𝑝𝑜𝑙𝑠[1 ∶ 4] contain the polarity correction

factors.
nitialize the known wideband channel sounding sequence 𝑡𝑥_𝑡𝑑 of
ength 𝑁 in time domain;
nitialize 𝑡𝑥_𝑝𝑜𝑙𝑠[1 ∶ 4] and 𝑟𝑥_𝑝𝑜𝑙𝑠[1 ∶ 4] to all 1s;
ead from file the saved calibration factors
elf_interference_fd[1:4][1:4] from Algorithm 7;

hile Self-Calibration Not Complete do
// Stage 1: Populate 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[1 ∶ 4][1 ∶ 4];
Initialize 𝑎𝑛𝑔[1 ∶ 4][1 ∶ 4] to all 0s;
Initialize 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[1 ∶ 4][1 ∶ 4] to all 0s;
for txIndex=1:4 do

Transmit 𝑡𝑥_𝑡𝑑 (with polarity 𝑡𝑥_𝑝𝑜𝑙𝑠[𝑡𝑥𝐼𝑛𝑑𝑒𝑥]) from 𝑡𝑥𝐼𝑛𝑑𝑒𝑥
continuously. All other TX channels are silent.;
Trigger and Receive 𝑟𝑥_𝑡𝑑[1 ∶ 4][1 ∶ 𝑁] from all RX channels
simultaneously. Apply 𝑟𝑥_𝑝𝑜𝑙𝑠[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] appropriately;
for rxIndex=1:4 do

Calculate rx_fd = FFT(rx_td[rxIndex][:]);
Calculate corr_fd = rx_fd .*
conj(self_interference_fd[1:4][1:4]);
Calculate corr_td = IFFT(corr_fd;
Calculate ang[txIndex][rxIndex] =
angle(max_peak(corr_td));
if 𝑎𝑏𝑠(𝑎𝑛𝑔[𝑡𝑥𝐼𝑛𝑑𝑒𝑥][𝑟𝑥𝐼𝑛𝑑𝑒𝑥] > 2 then

𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[𝑡𝑥𝐼𝑛𝑑𝑒𝑥][𝑟𝑥𝐼𝑛𝑑𝑒𝑥] = 1;
end

end
end

// Stage 2: Correct the Polarities;
if 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[1 ∶ 4][1 ∶ 4] is all 0s then

Terminate. We are done;
end

// Stage 2.1: Do we need to flip any tx_pols?;
for txIndex = 1:4 do

Count 𝑛 = the number of 1s in 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[𝑡𝑥𝐼𝑛𝑑𝑒𝑥][∶];
if n>=3 then

Assign 𝑡𝑥_𝑝𝑜𝑙𝑠[𝑡𝑥𝐼𝑛𝑑𝑒𝑥] = 𝑡𝑥_𝑝𝑜𝑙𝑠[𝑡𝑥𝐼𝑛𝑑𝑒𝑥] ∗ (−1);
Assign 𝑓𝑙𝑎𝑔 = 1;

end
end
if (flag == 1) then

Assign 𝑓𝑙𝑎𝑔 = 0;
continue;

end

// Stage 2.2: Do we need to flip any rx_pols?;
for rxIndex = 1:4 do

Count 𝑛 = the number of 1s in 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟[∶][𝑟𝑥𝐼𝑛𝑑𝑒𝑥];
if n>=3 then

Assign 𝑟𝑥_𝑝𝑜𝑙𝑠[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] = 𝑟𝑥_𝑝𝑜𝑙𝑠[𝑟𝑥𝐼𝑛𝑑𝑒𝑥] ∗ (−1);
Assign 𝑓𝑙𝑎𝑔 = 1;

end
end
if (flag == 1) then

Assign 𝑓𝑙𝑎𝑔 = 0;
continue;

end

// Stage 2.3: If we are here, we have two RX and two TX flips. To
break the deadlock, randomly flip rx_pols[1];
Assign 𝑟𝑥_𝑝𝑜𝑙𝑠[1] = 𝑟𝑥_𝑝𝑜𝑙𝑠[1] ∗ (−1);

nd

Computer Networks 196 (2021) 108220A. Dhananjay et al.
(a) TX channel 1 flipped; (b) RX channels 1,3 flipped; (c) TX channel 1,
RX channels 1,3 flipped; (d) TX channels 1,3 flipped, and RX channels
1,2 flipped.

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 1
1 0 1 0
1 0 1 0
1 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2 of the algorithm processes the matrix 𝑝𝑜𝑙_𝑒𝑟𝑟𝑜𝑟 and itera-
tively flips the polarities of 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 and 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 appropriately. Let us
consider the simple example (d) above, where the TX channels 1,3 were
flipped, and RX channels 1,2 were flipped when power cycling.

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 1
1 1 0 0
0 0 1 1
1 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2.3: Flip 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 = 1
←←→

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1 1
0 1 0 0
1 0 1 1
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2.1: Flip 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 = 1, 3
←←←→

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2.2: Flip 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 = 2
←←→

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Terminate. We are done.
←←→

Observe that the algorithm un-flipped all the flipped channels cor-
rectly. The reader can work through a few more examples to see that
this algorithm converges quickly to an equivalent, but correct set of
polarities. As a simple example, consider the case where TX channels
1,3 have flipped, and RX channels 2,3 have flipped. The algorithm will
iterate as follows:
⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2.3: Flip 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 = 1
←←→

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 1
1 1 1 0
0 0 0 1
1 1 1 0

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2.1: Flip 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 = 2, 4
←←←→

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

Stage 2.2: Flip 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 = 4
←←→

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Terminate. We are done.
←←→

We can observe that instead of flipping TX channels 1,3 and RX
channels 2,3, the algorithm instead flipped the other TX channels 2,4
and the other RX channels 1,4. These are equivalent outcomes.

In conclusion, this self-calibration of polarity upon power-up can
be run in one minute, after which the nodes are ready to be used.
Still, for best performance, we recommend performing a full two-node
calibration every few days, and running the routines after the nodes
have reached steady state temperature.

A Note on Stability: We have observed that the HMC6300 up-
converter and HMC6301 down-converter chips demonstrate time-
10

varying phase drifts (albeit over very long time scales). These phase
Fig. 9. [14] When the two nodes are placed in boresight, the AoA and AoD values
are correctly estimated to be 0 on both ends.

Fig. 10. [14] Beamforming demonstration when node trx-0002 is rotated
counter-clockwise by about 15 degrees.

drifts are temperature dependent. We have not yet had the opportunity
to calibrate our SDR nodes in an oven that carefully controls the
temperature. It is for this reason that our system cannot yet support
a mechanism wherein golden calibration is performed once in our labs,
and then self calibration can be performed at run time. We hope to
get there soon, but until then, we recommend that the users perform
two-node calibration prior to running experiments.

5. Beamforming demonstration

The ultimate test of whether an array has been calibrated properly
is if we can correctly form beams in the required directions. To do this,
we first apply all the required calibration factors to the signal to/from
each TX/RX channel. To transmit a beam in direction 𝜃 (where 𝜃 = 0
is boresight), the baseband signal for TX channel 𝑡𝑥𝐼𝑛𝑑𝑒𝑥 should be
multiplied by 𝑒𝑗⋅𝜋⋅𝑡𝑥𝐼𝑛𝑑𝑒𝑥⋅𝑠𝑖𝑛(𝜃). This is classical geometric beamforming
in the case of antenna elements being spaced 𝜆∕2 apart. Conversely, on
the receiver side, to receive a signal in direction 𝜃 (where 𝜃 = 0 is bore-
sight), the baseband signal from each RX channel 𝑟𝑥𝐼𝑛𝑑𝑒𝑥 needs to be
multiplied by 𝑒𝑗⋅𝜋⋅𝑟𝑥𝐼𝑛𝑑𝑒𝑥⋅𝑠𝑖𝑛(𝜃) prior to being combined. To demonstrate
beamforming on two nodes (A,B), the experiment involves:

• Transmit from a single channel on A. Receive on all RX channels
of B. Apply multiple beamforming vectors to look in all directions;

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Fig. 11. [14] Beamforming demonstration when node trx-0003 is rotated clockwise
by about 25 degrees.

• Transmit from all channels on A. Sequentially, apply beamform-
ing vectors to scan the transmit beams in different directions; in
each case, use a single RX channel on B, and measure the power;

• Transmit from a single channel on B. Receive on all RX channels
of A. Apply multiple beamforming vectors to look in all directions;

• Transmit from all channels on B. Sequentially, apply beamforing
vectors to scan the transmit beams in different directions; in each
case, use a single RX channel on A, and measure the power;

Essentially, this demonstrates RX and TX beamforming on both
nodes in the link, along with the estimation of the angle of arrival
(AoA) and angle of departure (AoD). We first place both nodes (named
trx-0002 and trx-0003) directly facing each other and ran the
experiment. Fig. 9 shows the TX and RX beam patterns, showing
that the AoA and AoD are estimated correctly. Next, we rotated node
trx-0002 counterclockwise by about 15 degrees, and repeated the
experiment; the results are shown in Fig. 10, showing that the correct
AoA and AoD have been detected. Finally, we returned trx-0002
to the original position, but rotated trx-0003 clockwise by about
25 degrees; the results are shown in Fig. 11; again, the correct AoA
and AoD were detected. These experiments demonstrate that the node
calibration has been performed correctly, as evidenced by successful
beamforming and estimation of AoA and AoD values. We do not
plot the pre-calibration beams as a point of comparison, because by
definition, uncorrected phase and timing offsets lead to meaningless
beams.

5.1. OFDM-based physical layer

In this experiment, the TX transmits four (the max allowed with 4
antennas) independent streams of data: one stream in each direction.
The RX looks in all four directions simultaneously. For each RX angle,
it attempts to synchronize and decode each of the four transmitted
streams. We demonstrate that all four TX streams can be decoded in
O(1) time, without any scanning or synchronization overhead. This has
been illustrated in Fig. 12. The code, alongside with a detailed tutorial,
is provided in [16,18].

6. Conclusion

Getting the Pi-Radio v1 SDR to work correctly required careful cali-
bration. There are many ways in which the behavior of practical devices
deviates from ideal, and these need to be calibrated in order to get
precise beams: (a) crystal frequency offset correction; (b) identification
of linear operating ranges; (c) timing offset corrections; (d) LO phase
11
Fig. 12. Constellation plots show the received quadrature phase shift keyed (QPSK)
symbols at nominal 60 GHz carrier frequency, when decoded in each of four RX
directions, with each RX direction decoding data corresponding to four TX directions.
The processing was done in MATLAB (non-real-time), and does not include a coding
layer.

offset corrections; (e) magnitude corrections; (f) IQ gain imbalance
corrections; (g) IQ quadrature LO phase imbalance corrections; and
(h) power-on self-calibration of polarities. We do not claim scientific
novelty for any of these methods. Rather, this paper serves as a tutorial
for calibrating an SDR node inexpensively and semi-automatically.

Performing calibration has hitherto relied on expensive lab bench
equipment like spectrum analyzers and signal synthesizers. In the
mmWave frequency range, these are particularly expensive. This paper
aims to demonstrate one set of techniques that can be used to calibrate
SDRs in an affordable manner. All calibration code (as well as Pi-
Radio’s v1 SDR hardware design schematics) have been released on
GitHub [16] using the free and highly permissive MIT license. It is
our vision to democratize access to experimental wireless research
not only through affordable SDRs that feature advanced transceiver
technologies (like fully-digital beamformers), but also through open
sourcing calibration code that can be used by the community either
on the Pi-Radio SDR platform or any other SDR platform.

CRediT authorship contribution statement

Aditya Dhananjay: Conceptualization, Methodology, Software,
Writing - review & editing, Funding acquisition. Kai Zheng: Hard-
ware design, Ssoftware. Marco Mezzavilla: Visualization, Supervision,
Writing - review & editing, Funding acquisition. Lorenzo Iotti: Soft-
ware, Advisory. Dennis Shasha: Writing - review & editing. Sundeep
Rangan: Supervision, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Acknowledgments

The Pi-Radio v1 SDR hardware was designed, built, and tested
(along with early calibration efforts) during the performance period
of NSF STTR Phase-I Award #1821150, A Fully-Digital Transceiver De-
sign for mmWave Communications (Phase-II recently awarded). More
advanced calibration techniques were implemented during the perfor-
mance period of the ARMY STTR Phase-I Award, Millimeter Waveforms
For Tactical Networking (contract #W911NF20P0038). An early version
of the SDR (based on a different architecture) was developed at New
York University, funded in part by a NIST, USA grant, An End-to-End
Research Platform for Public Safety Communications above 6 GHz (Award
70NANB17H166).

We would like to thank Prof. Arjuna Madanayake and Viduneth
Ariyarathna from Florida International University; their work on cali-
brating their sub-6 GHz and 28 GHz arrays were a starting point in this
work. We would also like to thank Prof. Jim Buckwalter, Prof. Mark
Rodwell, and Prof. Upamanyu Madhow from the University of Califor-
nia - Santa Barbara for enjoyable discussions about SDR calibration.
We would also like to thank Dr. Jaakko Haarla (Aalto University,
Finland) and Dr. Vasilii Semkin (UC Louvain, Belgium) for their help
with antenna design. Finally, we would like to thank the NSF RCN
community for their energy and vocal demands for increased access
to affordable real-world mmWave experimentation.

References

[1] F. Khan, Z. Pi, An introduction to millimeter-wave mobile broadband systems,
IEEE Commun. Mag. 49 (6) (2011) 101–107.

[2] T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K.
Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5g
cellular: It will work! IEEE Access 1 (2013) 335–349.

[3] S. Rangan, T.S. Rappaport, E. Erkip, Millimeter-wave cellular wireless networks:
Potentials and challenges, Proc. IEEE 102 (3) (2014) 366–385.

[4] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, J. Zhang, What
will 5g be? IEEE J. Sel. Areas Commun. 32 (6) (2014) 1065–1082.

[5] A. Ghosh, T.A. Thomas, M.C. Cudak, R. Ratasuk, P. Moorut, F.W. Vook, T.S.
Rappaport, G. MacCartney, S. Sun, S. Nie, Millimeter wave enhanced local area
systems: A high data rate approach for future wireless networks, IEEE J. Sel.
Areas Commun. 32 (6) (2014) 1152–1163.

[6] C. Dehos, J.L. Gonzalez, A.D. Domenico, D. Ktenas, L. Dussopt, Millimeter-wave
access and backhauling: the solution to the exponential data traffic increase in
5G mobile communications systems? IEEE Commun. Mag. 52 (9) (2014) 88–95.

[7] M. Akdeniz, Y. Liu, M. Samimi, S. Sun, S. Rangan, T. Rappaport, E. Erkip,
Millimeter wave channel modeling and cellular capacity evaluation, IEEE J. Sel.
Areas Commun. 32 (6) (2014) 1164–1179.

[8] T. Bai, R. Heath, Coverage and rate analysis for millimeter-wave cellular
networks, IEEE Trans. Wireless Commun. 14 (2) (2015) 1100–1114.

[9] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, M. Zorzi, Millimeter
wave cellular networks: A MAC layer perspective, IEEE Trans. Commun. 63 (10)
(2015) 3437–3458.

[10] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, M. Zorzi,
End-to-end simulation of 5G mmwave networks, IEEE Commun. Surv. Tutor. 20
(3) (2018) 2237–2263, http://dx.doi.org/10.1109/COMST.2018.2828880.

[11] M. Zhang, M. Polese, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi,
Will TCP work in mmwave 5G cellular networks? IEEE Commun. Mag. 57 (1)
(2019) 65–71, http://dx.doi.org/10.1109/MCOM.2018.1701370.

[12] K. Zheng, A. Dhananjay, M. Mezzavilla, A. Madanayake, S. Bharadwaj, V.
Ariyarathna, A. Gosain, T. Melodia, F. Restuccia, J. Jornet, M. Polese, M.
Zorzi, J. Buckwalter, M. Rodwell, S. Mandal, X. Wang, J. Haarla, V. Semkin,
Software-defined radios to accelerate mmwave wireless innovation, in: 2019 IEEE
International Symposium on Dynamic Spectrum Access Networks, DySPAN, 2019,
pp. 1–4.

[13] M. Polese, F. Restuccia, A. Gosain, J. Jornet, S. Bhardwaj, V. Ariyarathna, S.
Mandal, K. Zheng, A. Dhananjay, M. Mezzavilla, J. Buckwalter, M. Rodwell,
X. Wang, M. Zorzi, A. Madanayake, T. Melodia, MillimeTera: Toward a large-
scale open-source MmWave and Terahertz experimental testbed, in: Proceedings
of the 3rd ACM Workshop on Millimeter-Wave Networks and Sensing Systems,
mmNets’19, Association for Computing Machinery, New York, NY, USA, 2019,
pp. 27–32, http://dx.doi.org/10.1145/3349624.3356764.

[14] A. Dhananjay, K. Zheng, J. Haarla, L. Iotti, M. Mezzavilla, D. Shasha, S. Rangan,
Calibrating a 4-channel fully-digital 60 GHz SDR, in: Proceedings of the 14th
International Workshop on Wireless Network Testbeds, Experimental Evaluation
&Amp; Characterization, WiNTECH’20, Association for Computing Machinery,
New York, NY, USA, 2020, pp. 40–47, http://dx.doi.org/10.1145/3411276.
3412195.
12
[15] R. Zhao, T. Woodford, T. Wei, K. Qian, X. Zhang, M-cube: A millimeter-wave
massive MIMO software radio, in: Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, MobiCom ’20, Association for
Computing Machinery, New York, NY, USA, 2020, http://dx.doi.org/10.1145/
3372224.3380892.

[16] Fully-digital SDR Repo. [Online]. Available:https://github.com/adityadhananjay
/fully-digital.

[17] S.W. Ellingson, Correcting I-Q Imlabance in Direct Conversion Receivers.
[Online]. Available: https://www.faculty.ece.vt.edu/swe/argus/iqbal.pdf.

[18] Pi-Radio Website. [Online]. Available: https://www.pi-rad.io/.

Dr. Aditya Dhananjay got his Ph.D. in Computer Sci-
ence from the Courant Institute of Mathematical Sciences
at New York University (NYU) in 2015. He then joined
the Tandon School of Engineering at NYU as a post-doc,
where he gravitated closer to the Electrical Engineering
world. His skills and experience are related to embedded
SDR design, PCB design, mesh network implementations,
digital signal processing, FPGA programming, and various
CPU-based programming languages. He was the co-founder
of MilliLabs Inc, a spinoff startup working on mmWave
channel emulators.

Kai Zheng received his B.S in electronic engineering in Fu-
dan University, Shanghai, China in 2015. He then received
his M.S. in computer engineering from New York University,
in 2019. He is now a Ph.D. student in University of Cali-
fornia, San Diego. His research focus was mmWave wireless
communication and software defined radio. During 2015–
2017, Kai worked for Huawei Technology (Shanghai) as a
hardware engineer where he designed and delivered smart-
phone projects. In 2019–2020, Kai worked for Pi-Radio, a
startup company in Brooklyn NY, and designed mmWave
software defined radio systems for research purposes.

Dr. Marco Mezzavilla is a Research Scientist at NYU
Tandon School of Engineering, where he leads various
mmWave-related research projects, mainly focusing on 5G
PHY/MAC design. He received the B.Sc. (2007) and the
M.Sc. (2010) in Telecommunications Engineering from the
University of Padova (Italy), and the Ph.D. (2013) in In-
formation Engineering from the same university. He held
visiting research positions at the NEC Network Labora-
tories in Heidelberg (Germany, 2009), at the Telematics
Department at Polytechnic University of Catalonia (UPC)
in Barcelona (Spain, 2010) and at Qualcomm Research in
San Diego (USA, 2012). He has authored and co-authored
multiple papers in conferences, journals and some patent ap-
plications. He is serving as reviewer for many IEEE and ACM
conferences, journals and magazines. His research interests
include design and validation of communication proto-
cols and applications to Fourth-generation (4G) broadband
wireless technologies, millimeter wave communications for
5G networks, multimedia traffic optimization, radio re-
source management, spectrum sharing, convex optimization,
cognitive networks and experimental analysis.

Dr. Lorenzo Iotti received the B.S. and M.S. degrees in
electrical engineering and the Ph.D. degree in microelec-
tronics from the University of Pavia, Italy, in 2011, 2013,
and 2017, respectively. His doctoral research was focused on
CMOS integrated circuit design for mm-wave LO generation.
In 2013, he was a research intern at CEA Leti, Grenoble,
France, working on silicon photonics electro-optical modu-
lators. From 2017 to 2020 he was a postdoctoral researcher
at the University of California at Berkeley, USA, where he
was mainly involved in integrated transceiver design for
next-generation wireless applications. He is currently an
IC Design Engineer at Nokia, New York, USA, working on
integrated optical transceivers.

http://refhub.elsevier.com/S1389-1286(21)00262-0/sb1
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb1
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb1
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb2
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb3
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb4
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb5
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb6
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb7
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb8
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb9
http://refhub.elsevier.com/S1389-1286(21)00262-0/sb9
http://dx.doi.org/10.1109/COMST.2018.2828880
http://dx.doi.org/10.1109/MCOM.2018.1701370
http://dx.doi.org/10.1145/3349624.3356764
http://dx.doi.org/10.1145/3411276.3412195
http://dx.doi.org/10.1145/3411276.3412195
http://dx.doi.org/10.1145/3411276.3412195
http://dx.doi.org/10.1145/3372224.3380892
http://dx.doi.org/10.1145/3372224.3380892
http://dx.doi.org/10.1145/3372224.3380892
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://github.com/adityadhananjay/fully-digital
https://www.faculty.ece.vt.edu/swe/argus/iqbal.pdf
https://www.pi-rad.io/

Computer Networks 196 (2021) 108220A. Dhananjay et al.
Prof. Dennis Shasha is a Julius Silver Professor of computer
science at the Courant Institute of New York University
and an Associate Director of NYU Wireless. In addition
to his fascination with wireless computing, he works on
meta-algorithms for machine learning to achieve guaranteed
correctness rates; with biologists on pattern discovery for
network inference; with physicists and financial people on
algorithms for time series; on database tuning; and tree and
graph matching. Because he likes to type, he has written
six books of puzzles about a mathematical detective named
Dr. Ecco, a biography about great computer scientists, and
a book about the future of computing. He has also written
technical books about database tuning, biological pattern
recognition, time series, DNA computing, resampling statis-
tics, and causal inference in molecular networks. He has
written the puzzle column for various publications including
Scientific American, Dr. Dobb’s Journal, and currently the
Communications of the ACM. He is a fellow of the ACM and
an INRIA International Chair.
13
Prof. Sundeep Rangan received the B.A.Sc. at the Uni-
versity of Waterloo, Canada and the M.Sc. and Ph.D. at
the University of California, Berkeley, all in Electrical En-
gineering. He has held postdoctoral appointments at the
University of Michigan, Ann Arbor and Bell Labs. In 2000,
he co-founded (with four others) Flarion Technologies, a
spin-off of Bell Labs, that developed Flash OFDM, the first
cellular OFDM data system and pre-cursor to 4G cellular
systems including LTE and WiMAX. In 2006, Flarion was
acquired by Qualcomm Technologies. Dr. Rangan was a
Director of Engineering at Qualcomm involved in OFDM
infrastructure products. He joined NYU Tandon (formerly
NYU Polytechnic) in 2010 where he is currently a Professor
of Electrical and Computer Engineering. He is a Fellow of
the IEEE and the Associate Director of NYU WIRELESS,
an industry-academic research center on next-generation
wireless systems.

	Pi-Radio v1: Calibration techniques to enable fully-digital beamforming at 60 GHz
	Introduction and motivation
	Hardware description
	Calibration procedures
	Frequency offset calibration
	Linearity measurements
	Timing and phase offset calibration
	Magnitude correction
	IQ calibration on the receiver
	IQ calibration at the transmitter
	Summary of IQ calibration

	Self calibration upon power up
	Beamforming demonstration
	OFDM-based physical layer

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

